Số hữu tỉ: Lý thuyết và Bài tập về số hữu tỉ Chuyên đề số hữu tỉ lớp 7

Số hữu tỉ: Lý thuyết và Bài tập về số hữu tỉ Chuyên đề số hữu tỉ lớp 7

Bạn đang xem bài viếtSố hữu tỉ: Lý thuyết và Bài tập về số hữu tỉ Chuyên đề số hữu tỉ lớp 7 tại website Truongptdtntthptdienbiendong.edu.vn có thể kéo xuống dưới để đọc từng phần hoặc nhấn nhanh vào phần mục lục để truy cập thông tin bạn cần nhanh chóng nhất nhé.

Số hữu tỉ là tập hợp các số có thể viết được dưới dạng phân số. Tức là một số hữu tỉ có thể được biểu diễn bằng một số thập phân vô hạn tuần hoàn.Bài tập số hữu tỉ thuộc dạng bài tập thường gặp trong chương trình môn Toán từ lớp 7 đến lớp 12.

Để giúp các bạn học sinh biết cách làm bài tập số hữu tỉ, truongptdtntthptdienbiendong.edu.vn giới thiệu tài liệu chuyên đề số hữu tỉ. Tài liệu bao gồm đầy đủ lý thuyết về tập hợp các số hữu tỉ, cộng trừ số hữu tỉ, nhân chia số hữu tỉ, lũy thừa của số hữu tỉ kèm theo các dạng bài tập tự luyện. Hi vọng qua tài liệu này các em có nhiều gợi ý ôn tập, củng cố kiến thức để giải nhanh các bài tập Toán.

Số hữu tỉ: Lý thuyết và Bài tập về số hữu tỉ

  • A. Lý thuyết Số hữu tỉ
    • 1. Tập hợp các số hữu tỉ
    • 2. Cộng, trừ số hữu tỉ
    • 3. Nhân, chia số hữu tỉ
    • 4. Giá trị tuyệt đối của một số hữu tỉ
    • 5. Cộng, trừ, nhân chia số thập phân
    • 6. Lũy thừa của một số hữu tỉ
  • B. Bài tập Số hữu tỉ

A. Lý thuyết Số hữu tỉ

1. Tập hợp các số hữu tỉ

– Số hữu tỉ là số viết được dưới dạng phân số Số hữu tỉ: Lý thuyết và Bài tập về số hữu tỉ Chuyên đề số hữu tỉ lớp 7với a,b mathrm{a}, mathrm{b} in mathbb{Z}, mathrm{b} neq 0

– Ta có thể biểu diễn mọi số thực hữu tỉ trên trục số. Trên trục số, điểm biểu diễn số hữu tỉ x được gọi là điểm x.

– Với hai số hữu tỉ bất kì x, y ta tuôn có hoặc hoặc hoặc

– Nếu thì trên trục số x ở bên trái điểm y

– Số hữu tỉ lớn hơn 0 được gọi là số hữu tỉ dương

– Số hữu tỉ nhỏ hơn 0 được gọi là số hữu tỉ âm

Số hữu tỉ 0 không là số hữu tỉ dương cũng không là số hữu tỉ âm.

Ví dụ: frac{2}{3}; frac{3}{5}

2. Cộng, trừ số hữu tỉ

2.1. Cộng, trừ hai số hữu tỉ

– Ta có thể cộng, trừ hai số hữu tỉ x, y bằng cách viết chúng dưới dạng hai phân số có cùng một mẫu dương rồi áp dụng quy tắc cộng, trừ phân số

– Phép cộng số hữu tỉ có các tính chất của phép cộng phân số:

  • Tính chất giao hoán
  • Tính chất kết hợp
  • Cộng với số 0

– Mỗi số hữu tỉ đều có một số đối.

Ví dụ:

frac{-1}{21}+frac{-1}{28}=frac{-4}{84}+frac{-3}{84}=frac{(-4)+(-3)}{84}=frac{-7}{84}

2.2. Quy tắc “chuyển vế”

Khi chuyển vế một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó.

Ví dụ:

mathrm{x}+frac{1}{3}=frac{3}{4} Leftrightarrow mathrm{x}=frac{3}{4}-frac{1}{3} Leftrightarrow mathrm{x}=frac{5}{12}

3. Nhân, chia số hữu tỉ

3.1. Nhân, chia hai số hữu tỉ

– Ta có thể nhân, chia hai số hữu tỉ bằng viết chúng dưới dạng phân số rồi áp dụng quy tắc nhân, chia phân số.

– Phép nhân số hữu tỉ có các tính chất của phép nhân phân số:

  • Tính chất giao hoán
  • Tính chất kết hợp
  • Nhân với số 1
  • Tính chất phân phối của phép nhân đối với phép cộng.
  • Mỗi số hữu tỉ khác 0 đều có một số nghịch đảo

Ví dụ:

3,5 cdotleft(-1 frac{2}{5}right)=frac{7}{2} cdot frac{-7}{5}=frac{-49}{10}

4. Giá trị tuyệt đối của một số hữu tỉ

Giá trị tuyệt đối của một số hữu tỉ x, kí hiệu là là khoảng cách từ điểm x đến điểm 0 trên trục số

Ví dụ:

mathrm{x}=frac{1}{5} Leftrightarrowleft[begin{array}{l}mathrm{x}=frac{1}{5} \ mathrm{x}=-frac{1}{5}end{array}right.

5. Cộng, trừ, nhân chia số thập phân

Để cộng, trừ, nhân, chia số thập phân, ta có thể viết chúng dưới dạng phân số thập phân rồi làm theo quy tắc các phép tính đã biết về phân số.

0,5+0,75=frac{1}{2}+frac{3}{4}=frac{2}{4}+frac{3}{4}=frac{5}{4}

6. Lũy thừa của một số hữu tỉ

6.1. Lũy thừa với số mũ tự nhiên

Lũy thừa bậc n của một số hữu tỉ x, kí hiệu là , là tích của n thừa số x (n là một số tự nhiên lớn hơn 1)

Quy ước: x^{1}=x ; x^{0}=1(x neq 0)

Ví dụ: 2^{3}=2.2 .2 ; 3^{5}=3.3 .3 .3 .3

6.2. Tích và thương của hai lũy thừa cùng cơ số

-quad mathrm{x}^{mathrm{m}} cdot mathrm{x}^{mathrm{n}}=mathrm{x}^{mathrm{m}+mathrm{n}} (Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng hai số mũ)

- mathrm{x}^{mathrm{m}}: mathrm{x}^{mathrm{n}}=mathrm{x}^{mathrm{m}-mathrm{n}}(mathrm{x} neq 0, mathrm{~m} geq mathrm{n}) (Khi chia hai lũy thừa cùng cơ số khác 0, ta giữ nguyên cơ số và lấy số mũ của lũy thừa bị chia trừ đi số mũ của lũy thừa chia).

Ví dụ:3^{5} cdot 3^{2}=3^{5+2}=3^{7} ; 2^{5}: 2^{2}=2^{5-2}=2^{3}

6.3. Lũy thừa của lũy thừa

left(mathrm{x}^{mathrm{m}}right)^{mathrm{n}}=mathrm{x}^{mathrm{m} . mathrm{n}} (Khi tính lũy thừa của một lũy thừa, ta giữ nguyên cơ số và nhân hai số mũ.

Ví dụ:left(2^{3}right)^{2}=2^{3.2}=2^{6}

6.4. Lũy thừa của một tích

(mathrm{x} cdot mathrm{y})^{mathrm{n}}=mathrm{x}^{mathrm{n}} . mathrm{y}^{mathrm{n}} (Lũy thừa của một tích bằng tích các lũy thừa)

Ví dụ:(2.3)^{2}=2^{2} cdot 3^{2}=4.9=36

6.5. Lũy thừa của một thương

left(frac{mathrm{x}}{mathrm{y}}right)^{mathrm{n}}=frac{mathrm{x}^{mathrm{n}}}{mathrm{y}^{mathrm{n}}}(mathrm{y} neq 0) (Lũy thừa của một thương bằng thương các lũy thừa)

Ví dụ:left(frac{2}{3}right)^{3}=frac{2^{3}}{3^{3}}=frac{8}{27}

B. Bài tập Số hữu tỉ

I. Bài tập tự luyện

Bài toán 1: Điền kí hiệu ( in,notin,subset) vào chỗ trống

a) -5 square mathbb{N}

b) -5 square mathbb{Z}

c) -5 square mathbb{Q}

d) -frac{3}{7} square mathbb{Z}

e) -frac{3}{7} square mathbb{Q}

g) mathbb{N} square mathbb{Q}

h) frac{6}{7} square mathbb{Q}

f) mathbb{N} square mathbb{Z} square mathbb{Q}

Bài toán 2: Điền ký hiệu (N, mathbb{Z}, mathbb{Q}) vào chỗ trống

a) -3 in square

b) 10 in square

c) frac{-3}{7} in square

d) frac{2}{9} in square

Bài toán 3: Trong các phân số sau, phân số nào biểu diễn số hữu tỉ

frac{2}{5} ; frac{6}{-15} ;-frac{3}{7} ; frac{4}{-12} ; frac{-14}{35} ; frac{4}{-10} ; frac{17}{40}

Bài toán 4: So sánh các số hữu tỉ

1. x = frac{2}{- 5} và y = frac{-3 }{13}

2. x=frac{-196}{225}y=frac{13}{-15}

3. x=-0,375y=frac{-3}{8}

4. x=frac{34}{-4}y=-8,6

5. x=frac{3}{7}và y=frac{11}{15}

6. mathrm{x}=frac{-11}{6}mathrm{y}=frac{-8}{9}

7. x=frac{297}{16}y=frac{306}{25}

8. mathrm{x}=frac{-1}{4}mathrm{y}=frac{1}{100}

9. mathrm{x}=frac{127}{-128}mathrm{y}=frac{-1345}{1344}

10. x=frac{-11}{33}y=frac{25}{-76}

11 . mathrm{x}=-frac{17}{23}mathrm{y}=frac{-171717}{232323}

12. x=frac{-265}{317}y=frac{-83}{111}

13. mathrm{x}=frac{2002}{2003}mathrm{y}=frac{14}{13}

14. x=frac{-27}{463}y=frac{-1}{-3}

Bài toán 5: Trong các câu sau, câu nào đúng, câu nào sai?

a) Số hữu tỉ dương lớn hơn số hữu tỉ âm

b) Số hữu tỉ dương lớn hơn số tự nhiên

c) Số 0 là số hữu tỉ âm

d) Số nguyên dương là số hữu tỉ.

Bài toán 6: Sắp xếp các số hữu tỉ sau theo thứ tự giảm dần:

a) frac{-12}{17} ; frac{-3}{17} ; frac{-16}{17} ; frac{-1}{17} ; frac{-11}{17} ; frac{-14}{17} ; frac{-9}{17}

b) frac{-5}{9} ; frac{-5}{7} ; frac{-5}{2} ; frac{-5}{4} ; frac{-5}{8} ; frac{-5}{3} ; frac{-5}{11}

c) frac{-7}{8} ; frac{-2}{3} ; frac{-3}{4} ; frac{-18}{19} ; frac{-27}{28}

Bài toán 7: Cho số hữu tỉ x=frac{a-3}{2} . với giá trị nào của a thì:

a) x là số nguyên dương;

b) x là số âm;

c) x không là số dương và cũng không là số âm.

Bài toán 8: Cho số hữu tỉ y=frac{2 a-1}{-3} Với giá trị nào của a thì:

a) y là số nguyên dương;

b) y là số âm;

c) y không là số dương và cũng không là số âm.

Bài toán 9: Cho số hữu tỉ mathrm{x}=frac{mathrm{a}-5}{mathrm{a}}(mathrm{a} neq 0). Với giá trị nào của a thì x là số nguyên.

Bài toán 10: Cho số hữu tỉ mathrm{x}=frac{mathrm{a}-3}{2 mathrm{a}}(mathrm{a} neq 0). Với giá trị nào của a thì x là số nguyên.

……………..

Bài toán 26

a) frac{20^{5} cdot 5^{10}}{100^{5}}

b) frac{(0,9)^{5}}{(0,3)^{6}}

c) frac{6^{3}+3.6^{2}+3^{3}}{13}

d) frac{4^{6} cdot 9^{5}+6^{9} cdot 120}{8^{4} cdot 3^{12}-6^{11}}

Bài toán 27: So sánh:

a) 2^{24} và 3^{16}

b) 3^{34} và 5^{20}

c) 71^{5} và 17^{20}

d)3.24^{100} và 3^{300}+4^{300}

Bài toán 28: Tìm các số nguyên dương n, biết:

a) quad 32<2^{mathrm{n}}<128

b) 2.16 geq 2^{mathrm{n}}>4

c) 9.27 leq 3^{mathrm{n}} leq 243

Bài toán 29: Chứng minh rằng với mọi số nguyên dương n, thì:

a) 3^{mathrm{n}+2}-2^{mathrm{n}+2}+3^{mathrm{n}}-2^{mathrm{n}} chia hết cho 10

b) 3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2} chia hết cho 6.

Bài toán 30: Tìm x, y biết: (2 mathrm{x}-5)^{2000}+(3 mathrm{y}+4)^{2002} leq 0

Bài toán 31: Tính

a) mathrm{M}=frac{8^{10}+4^{10}}{8^{4}+4^{11}}

b) mathrm{N}=frac{15^{30}}{45^{15}}

II. Bài tập có đáp án

Bài 1

Sắp xếp các số sau theo thứ tự tăng dần:

a) {(0,2)^0};{(0,2)^3};{(0,2)^1};{(0,2)^2};

b) {( - 1,1)^2};{( - 1,1)^0};{( - 1,1)^1};{( - 1,1)^3}.

Gợi ý đáp án

a) {left( {0,2} right)^0} = 1;{left( {0,2} right)^1} = 0,2;{left( {0,2} right)^2} = 0,04;{left( {0,2} right)^3} = 0,008

Vì 0,008 < 0, 04 < 0,2< 1 nên sắp xếp các số theo thứ tự tăng dần là:

{(0,2)^0};{(0,2)^1};{(0,2)^2};{(0,2)^3}.

b) {left( { - 1,1} right)^0} = 1;{left( { - 1,1} right)^1} = - 1,1;{left( { - 1,1} right)^2} = 1,21;{left( { - 1,1} right)^3} = - 1,331

Vì -1,331 < -1,1 < 1 < 1,21 nên sắp xếp các số theo thứ tự tăng dần là:

{( - 1,1)^3};{( - 1,1)^1}{( - 1,1)^0};{( - 1,1)^2}

Bài 2

Trọng lượng của một vật thể trên Mặt Trăng bằng khoảng frac{1}{6} trọng lượng của nó trên Trái Đất. Biết trọng lượng của một vật trên Trái Đất được tính theo công thức: P = 10;{rm{m}} với P là trọng lượng của vật tính theo đơn vị Niu-tơn (kí hiệu {rm{N}}); m là khối lượng của vật tính theo đơn vị ki-lô-gam.

(Nguồn: Khoa học tự nhiên 6, NXB Đại học Sư phạm, 2021)

Nếu trên Trái Đất một nhà du hành vũ trụ có khối lượng là 75,5;{rm{kg}} thì trọng lượng của người đó trên Mặt Trăng sẽ là bao nhiêu Niu-tơn (làm tròn kết quả đến hàng phần trăm)?

Gợi ý đáp án

Trọng lượng người đó trên Trái Đất là: 75,5.10 = 755 (N)

Trọng lượng người đó trên Mặt Trăng là:

755.dfrac{1}{6} approx 125,83 (N)

Bài 3

Một người đi quãng đường từ địa điểm A đến địa điểm B với vận tốc 30;{rm{km}}/{rm{h}} mất 3,5 giờ. Từ địa điểm B quay trở về địa điểm A, người đó đi với vận tốc 36;{rm{km}}/{rm{h}}. Tính thời gian đi từ địa điểm B quay trở về địa điểm A của người đó.

Gợi ý đáp án

Quãng đường AB dài: 30.3,5 = 105 (km)

Thời gian người đó đi quãng đường từ địa điểm B về địa điểm A là:

105:36 = frac{{35}}{{12}} (giờ)

Bài 4

Một trường trung học cơ sở có các lớp 7A, 7B, 7C, 7D, 7E; mỗi lớp đều có 40 học sinh. Sau khi sơ kết Học kì I, số học sinh ở mức Tốt của mỗi lớp đó được thể hiện qua biểu đồ cột ở Hình 5 .

a) Lớp nào có số học sinh ở mức Tốt ít hơn một phần tư số học sinh của cả lớp?

b) Lớp nào có số học sinh ở mức Tốt nhiều hơn một phần ba số học sinh của cả lớp?

c) Lớp nào có tỉ lệ học sinh ở mức Tốt cao nhất, thấp nhất?

Gợi ý đáp án

a) Một phần tư số học sinh cả lớp là:frac{1}{4}.40 = 10 (học sinh).

=>Lớp 7C và 7E có số học sinh ở mức Tốt ít hơn một phần tư số học sinh của cả lớp.

b) Một phần ba số học sinh cả lớp là:frac{1}{3}.40 approx 13 (học sinh).

=> Lớp 7A và 7D có số học sinh ở mức Tốt nhiều hơn một phần ba số học sinh của cả lớp.

c) Lớp 7D có tỉ lệ học sinh ở mức Tốt cao nhất.

Lớp 7E có tỉ lệ học sinh ở mức Tốt thấp nhất

Cảm ơn bạn đã theo dõi bài viết Số hữu tỉ: Lý thuyết và Bài tập về số hữu tỉ Chuyên đề số hữu tỉ lớp 7 tại website Truongptdtntthptdienbiendong.edu.vn nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Xin Chân thành cảm ơn.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *